The Utility Problem for Lazy Learners - Towards a Non-eager Approach

نویسندگان

  • Tor Gunnar Houeland
  • Agnar Aamodt
چکیده

The utility problem occurs when the performance of learning systems degrade instead of improve when additional knowledge is added. In lazy learners this degradation is seen as the increasing time it takes to search through this additional knowledge, which for a sufficiently large case base will eventually outweigh any gains from having added the knowledge. The two primary approaches to handling the utility problem are through efficient indexing and by reducing the number of cases during case base maintenance. We show that for many types of practical case based reasoning systems, the encountered case base sizes do not cause retrieval efficiency to degrade to the extent that it becomes a problem. We also show how complicated case base maintenance solutions intended to address the utility problem can actually decrease the combined system efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Case Based Reasoning with Bayesian Model Averaging: An Improved Method for Survival Analysis on Microarray Data

The Utility Problem for Lazy Learners Towards a Non-eager Approach p. 141 EGAL: Exploration Guided Active Learning for TCBR p. 156 Introspective Knowledge Revision in Textual Case-Based Reasoning p. 171 A General Introspective Reasoning Approach to Web Search for Case Adaptation p. 186 Detecting Change via Competence Model p. 201 CBTV: Visualising Case Bases for Similarity Measure Design and Se...

متن کامل

Semi-Lazy Learning: Combining Clustering and Classifiers to Build More Accurate Models

Eager learners such as neural networks, decision trees, and naïve Bayes classifiers construct a single model from the training data before observing any test set instances. In contrast, lazy learners such as Knearest neighbor consider a test set instance before they generalize beyond the training data. This allows making predictions from only a specific selection of instances most similar to th...

متن کامل

A Tale of Two Solvers: Eager and Lazy Approaches to Bit-Vectors

The standard method for deciding bit-vector constraints is via eager reduction to propositional logic. This is usually done after first applying powerful rewrite techniques. While often efficient in practice, this method does not scale on problems for which top-level rewrites cannot reduce the problem size sufficiently. A lazy solver can target such problems by doing many satisfiability checks,...

متن کامل

Lazy and Eager Approaches for the Set Cover Problem

The SET COVER problem is tantalizingly simple to describe: given a collection F of sets, each containing a subset of a universe U of objects, find a smallest subcollection A of F such that every object in U is included in at least one of the sets in A. However, like many such combinatorial problems, SET COVER is NP-hard, meaning that it is unlikely that an efficient algorithm will be found, and...

متن کامل

A Lazy Ensemble Learning Method to Classification

Depending on how a learner reacts to the test instances, supervised learning divided into eager learning and lazy learning. Lazy learners endeavor to find local optimal solutions for each particular test instance. Many approaches for constructing lazy learning have been developed, one of the successful one is to incorporate lazy learning with ensemble classification. Almost all lazy learning sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010